

Working Together on a Triple Win

Status of discussion on decisions related to maintaining and/or enhancing energy efficiency under the MLF

Thanavat Junchaya

MP Operations, World Bank

International Conference on Sustainable Cooling & 5th COOL Workshop

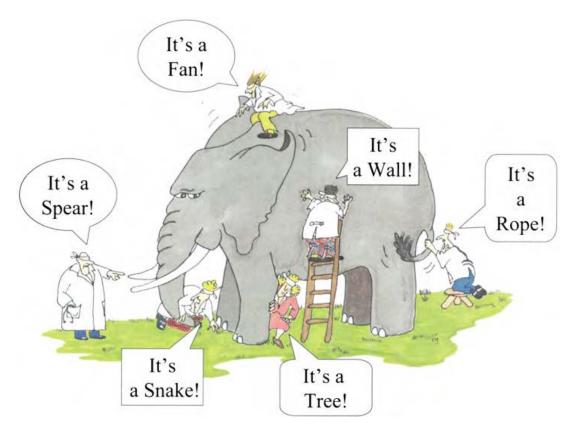
28-30 November 2018

Decisions related to EE

- MOP Decision XXVIII-2 (para. 22) To request ExCom to develop cost guidance associated with maintaining and/or enhancing the EE of low-GWP or zero-GWP replacement technologies and equipment, when phasing down HFCs, while taking note the role of other institutions addressing EE, when appropriate
- Update on ExCom work related to EE
 - ExCom has been discussing the development of cost guidelines since 2017 but has not yet completed their deliberations.
 - Energy efficiency remains one of the outstanding issues for further discussion
 - ExCom would hold further discussions at upcoming 82nd meeting next week while taking into account discussions from OEWG-40 and MOP-30.

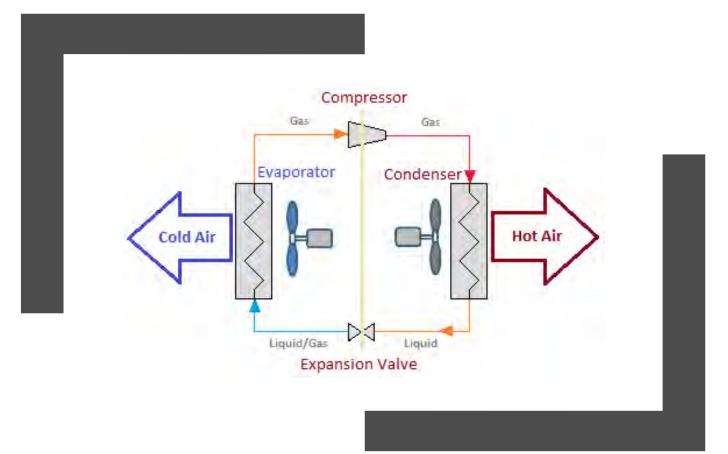
Additional work on EE to be requested to the Secretariat (in draft)

- Issues associated with maintaining and/or enhancing EE
 - Incremental costs in the manufacturing and servicing of RAC equipment
 - Pay-back periods and economic benefits associated with EE improvements in RAC sector
 - Possible modalities for funding, including operational modalities for co-funding with other institutions
 - Requirements for establishing MEPs including testing and verification of EE in equipment
 - Institutional and regulatory framework needed in A-5 countries
- Consider appropriate standards and directives (EU directives for reducing GHG emissions, etc.)
- Consider Austria paper (CRP submitted to 80th ExCom)
 - Similar issues with some differences, plus:
 - Inventory of EE activities already undertaken and/or funded by GEF and GCF
 - Cost guidance, methodologies, processes, monitoring, verification associated with EE interventions by GEF and GCF



MOP-30 decision: Access to EE technologies in RACHP sector

- Request ExCom to consider flexibility within HFC-enabling activities
 - Developing and enforcing policies and regulations to avoid the market penetration of energy-inefficient RACHP equipment,
 - Promoting access to energy-efficient technologies in these sectors;
 - Targeted training on certification, safety and standards, awareness-raising and capacity-building aimed at maintaining and enhancing the energy efficiency
- Request ExCom to identify best practices, lessons learned, and additional opportunities for maintaining energy efficiency in the servicing sector


What are the *incremental costs* for maintaining and/or enhancing EE in the manufacturing of RAC equipment

- MLF eligible incremental cost
 - Support manufacturer during its refrigerant transition to zero-, low, lower-GWP alternatives
 - Safety system if transition to flammable refrigerant
- What about "technical upgrade" EE improvement options – are they eligible

Main components of RACHP equipment

- EE improvement options
 - Compressor: inverter/variable speed
 - Heat exchanger improvements: microgroove tube, microchannel
 - Variable speed fan
 - Electronic expansion valve
 - Smart control/sensor

Analysis of incremental costs

	Maintain (fixed speed > fixed speed)	Enhancing (fixed speed > inverter)
Product development		
Modification of R&D and testing facilities for handling flammable refrigerant (A2L or A3)	\$10,000	
Improving calorimeter room for testing low load		\$150,000
Product design, prototype development, field test, product certification	\$8,500	\$9,000
Capital Cost		
New refrigerant charging machine for flammable refrigerant	\$75,000 (per unit)	
Replacement of vacuum pumps	\$2,500 (per unit)	
Storage and transfer of flammable refrigerant	\$30,000	
Safety: leak detectors, ventilation, fire suppression system	\$50,000	
Modifications to heat exchanger production line to handle higher pressure refrigerant	\$90,000	
Inverter control box assembly line		\$15,000
Improvement of functional test on inverter in condensing unit assembly line		\$3,000

Analysis of incremental costs

	Maintain (fixed speed > fixed speed)	Enhancing (fixed speed > inverter)
Operating cost		
Compressor	\$5-10	\$85-120
Refrigerant cost	-	-
AC $ ightarrow$ variable speed DC fan motor in condensing unit		\$15-24
Capillary tube \rightarrow electronic expansion valve		\$10
Inverter Drive Development		
Torque Testing Machine to tune Inverter Driver with Compressor Motor Parameter		\$150,000
EMC testing facilities		\$2,600,000
Surge Test, Lightening Test for Inverter Driver		\$50,000
AC source to simulate undervoltage, overvoltage		\$50,000
Testing Chamber for inverter driver		\$60,000
Field test inverter driver		\$3,000 (per model)

Incremental costs for maintaining and/or enhancing EE in the servicing of RAC equipment

- Neglecting necessary maintenance ensures a steady decline in air conditioning performance while energy use steadily increases
- Best practice maintenance can deliver utility cost savings of 10–40% when compared with poor maintenance.

Source:

https://www.airah.org.au/Content_Files/UsefulDocuments/DCCEE_HVAC_HE SS_GuideToBestPractice2012.PDF Pay-back periods and economic benefits associated with EE improvements in RAC sector

- Instead of incremental operating cost higher EE RAC equipment would lead to incremental operating saving for end-users
- Thailand chiller replacement & global chiller projects co-funding with GEF and other institutions
- MOP-30: Request ExCom, in dialogue with the Ozone Secretariat, to liaise with other funds and financial institutions to explore mobilizing additional resources and, as appropriate, set up modalities for cooperation

Thank you

