

Member, OORG Technical Advisor (AC&R and Montreal Protocol)

High Ambient Temperature (HAT) Countries

- □ Equatorial regions, the Middle East, northern Africa and parts of some other/regions/countries across the globe witness temperature around 50 degree C for long period in the year;
- Parties to the Montreal Protocol recognized since 2009 about the non-availability of refrigerant options for stationary AC for HAT;
- □ R-410A, the commonly used alternative to HCFC-22 was not found adequate in HAT due to its sharp degradation in the performance with the increased condensing temperature;
- Several Studies have been carried out by TEAP since 2009 on the request of Parties to the Montreal Protocol on this subject;
- □ Search for lower GWP alternatives has further added the uncertainties.

Choice of Refrigerants

Focusing on Emissions of Refrigerants & Energy Efficiency is essential to do what's right

ASHRAE 34: Safety Classification of Refrigerants

	Lower (Chronic) Toxicity	Higher (chronic) Toxicity
Non-flammable	HCFC-22 R-744 HFC-134a R-410A, R-407C,R-404A	HFC-123
Mildly Flammable	HFC-1234ze HFC-1234yf HFC-32	
Flammable	HFC-152a	R-717
Higher Flammability	HC-290 HC-600a	

Increasing safety requirement

safety requirement

Increasing

Lower- GWP Options- Single Component Refrigerants

Natural Refrigerants

HCs: R-600a, R-290, Ammonia and CO2

Fluorocarbon Lower GWP Refrigerants

High Pressure: HCFC-22 Replacements -HFC-32

Medium Pressure:

HFC-134a Replacements- HFO-1234yf, HFO-1234ze (E), HFC-152a

Low Pressure: HCFC-123 Replacements-HFO-1233zd (E), HFO-1336mzz 6

Several Blends of HFO/ HFCs have been tested (list of potential blends not limited to)

Blend	Composition	Temperature Glide 0C	Safety Class	GWP (100Year)	Equivalent to
R-444B	HFC32/1234ze/152a	~10	A2L	290	HCFC-22
R-446A	HFC-32/1234ze/ 600	~5.4	A2L	460	R-410A
R-452B	HFC-32/1234yf/125	0.9	A2L	680	R-410A
R-448A	HFC 32/ 125 1234yf/ 134a /1234ze	5.7	A1	1300	R-404A
R-450A	HFO-1234ze/R-134a	0.6	A1	550	R-134a
R-513A	HFO-1234yf/134a	0.0	A1	570	R-134a
R-514A	HFO-1336mzz(Z) / dichloromethane	0.0	A1	<2	HCFC-123

Relative Performance of Refrigerants in HAT

Refrigerant	Condensing Temperature (°C)				
	40	50	60	65	
HCFC-22	100	100	100	100	
HFC-32	100	100	99	98	
HC-290	100	98	96	95	
R-407C	100	97	94	92	
R-410A	100	97	93	90	

Units designed for equal capacity at 40 °C

Lower cooling capacity and efficiency for all refrigerants as the heat-rejection (condensing temperature) temperature increases.

Source: RTOC 2010

Why decrease in performance in HAT?

Enthalpy

Refrigerant	T critical °C
HCFC-22	96.1
R-290	96.7
R-410A	71.4
HFC-32	78.1
R-452B	79.2
HFC-134a	110
HFO-1234yf	94.7
HFO-1z34ze	109.4
R-513A	97.7
HCFC-123	183.7
HFO-1233zdE	165.8
R-514A	197.4

Test Conditions Used For Evaluation of Alternative Refrigerants for High Ambient Countries

9

Test condition	Outdoor	Indoor			
	Dry-bulb temp.	Dry-bulb temp.	Wet-bulb temp.	Relative humidity	
	°C (°F)	°C (°F)	°C (°F)	%	
AHRI B	27.8 (82.0)	26.7 (80.0)	19.4 (67.0)	50.9	
AHRI A	35.0 (95.0)	26.7 (80.0)	19.4 (67.0)	50.9	
T3*	46 (114.8)	26.7 (80.0)	19 (66.2)	50.9	
Т3	46 (114.8)	29 (84.2)	19 (66.2)	39.0	
Hot	52 (125.6)	29 (84.2)	19 (66.2)	39.0	
Extreme	55 (131.0)	29 (84.2)	19 (66.2)	39.0	

Impact of Ambient Temperature on COP R-410A Options

Source: OAK RIDGE National Laboratory Study

Impact of Ambient Temperature on Capacity - 410A

Source: OAK RIDGE National LaboratoryStudy

Performance Relative to HCFC-22 at Extreme Conditions 55°C (131.0°F Outdoor, 29°C (84.2°F) Indoor

Source: OAK RIDGE National Laboratory Study

Performance Relative to R-410A at Extreme Conditions – 55°C (131.0°F Outdoor, 29°C (84.2°F) Indoor

Source: OAK RIDGE National Laboratory Study

Characteristics of R-290 & Its Limitation

- Single Fluid
- ➢ Boiling point -42.1°C
- Compatible with mineral oil with viscosity correction
- > Hydrocarbons purity class 99.5% as refrigerant
- > No acid formation in combination with water
- > Highly Flammable (A3)

> Charge quantity is limited for a given space for safety considerations

Charge Quantity Limits for R-290

- □ The Charge quantity should be based on as per the IEC 60335-2-40
- Maximum R-290 Charge in kg: 2.5 x (LFL)^{5/4} x 2.1 m x (room floor area area (m²))^{1/2}

For Example: Room Area: $6 \text{ m} \times 5 \text{ m} = 30 \text{ m}^2$ installation height 2.1 m, charge quantity= 480g.

HAT – Cooling Capacity

16

- **External Heat gain is proportional to difference in ambient and indoor temperature;**
- **Cooling requirement per sq m floor area increase with the increase in ambient temperature;**

- In HAT conditions, the cooling load of a conditioned space can be up to three times that for moderate climates;
- > Larger capacity refrigeration systems will be needed which implies a higher refrigerant charge.

Characteristics of HFC-32

- Single component fluid;
- Boiling point: -51.7°C;
- Sensitive to contamination;
- > Miscible with Polyol Easter oils;
- > Higher Discharge Temperature;
- Mildly Flammable (A2L)

Impact on Compressor Discharge Temperature

Higher Discharge temperatures could be addressed through equipment design:
> Oversizing of condenser/vapor or liquid injection compressor

Status of Lower-GWP Technical Options for HAT

□ Room Air Conditioners (RAC) - HCFC-22 & R-410A Replacements:

- > HFC-32 : widely accepted technical option including for HAT;
- Currently commercial scale use of R-290 is limited due to limitation of charge quantity for a given space and safety considerations;
- R-290 may not be a choice of refrigerant for HAT as charge quantities will be beyond the safe limit for the same floor area as in temperate climates;
- FFC/ HFO blends: Several blends of HFCs, HFO but not commercially used in any market
 - R-452B (HFC-32/HFO-1234yf/HFC-125)
 - > R-444B (HFC-32/HFC-152a/HFO-1234ze)
- □ No new refrigerant molecules have been reported in last 3 years
- □ HFC/ HFO blends have been reported but most of the blends have GWP above 600.

THANK YOU

Prof. Radhey S. Agarwal Member OORG Technical Advisor, Ozone Cell, India E-mail: agarwalrsa@gmail.com