On behalf of:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety



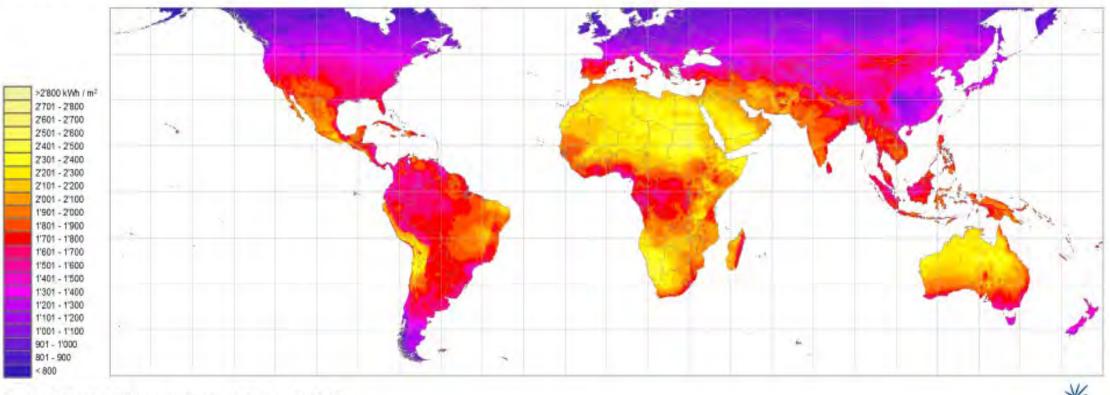
of the Federal Republic of Germany





#### Solar Cooling for Industry and Commerce Experiences gained in Jordan Philipp Denzinger GIZ, Proklima World Bank's International Conference on Sustainable Cooling Washington DC, Nov 28-30, 2018




# Agenda

- Introduction to solar cooling and Jordan conditions
- Industrial & commercial solar cooling in Jordan
- Economic Feasibility Costs
- Gained Experiences
- Recommendations
- Up-scaling

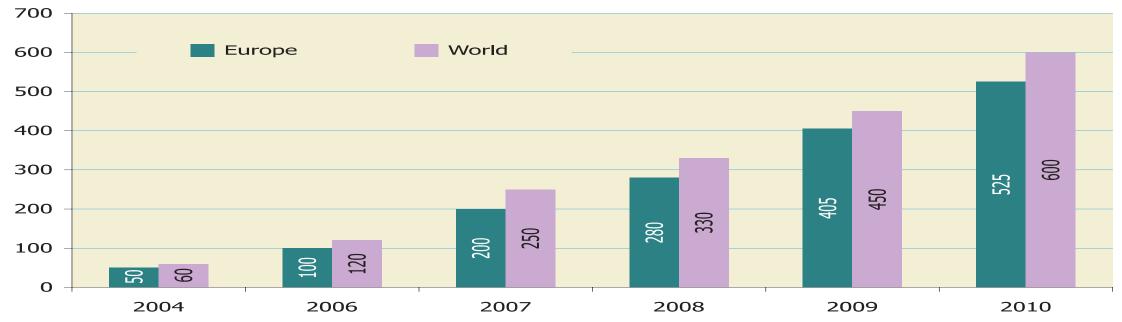


# **Global Solar Irradiation**

Yearly sum of Global Horizontal Irradiation (GHI)



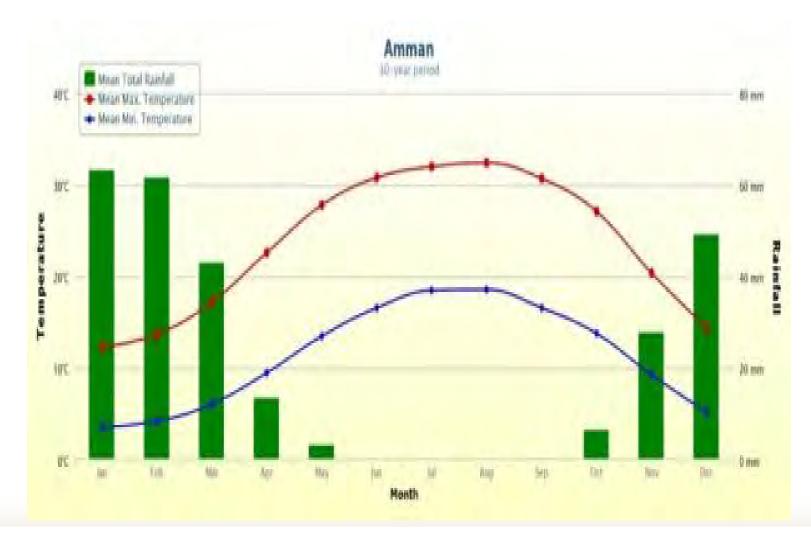
Source: Meteonorm 7.1 (www.meteonorm.com); uncertainty 8% Period: 1991 - 2010; grid cell size: 0.125°




h



# Increasing number of solar cooling systems installed globally


Total amount of installed solar cooling systems in Europe and the world

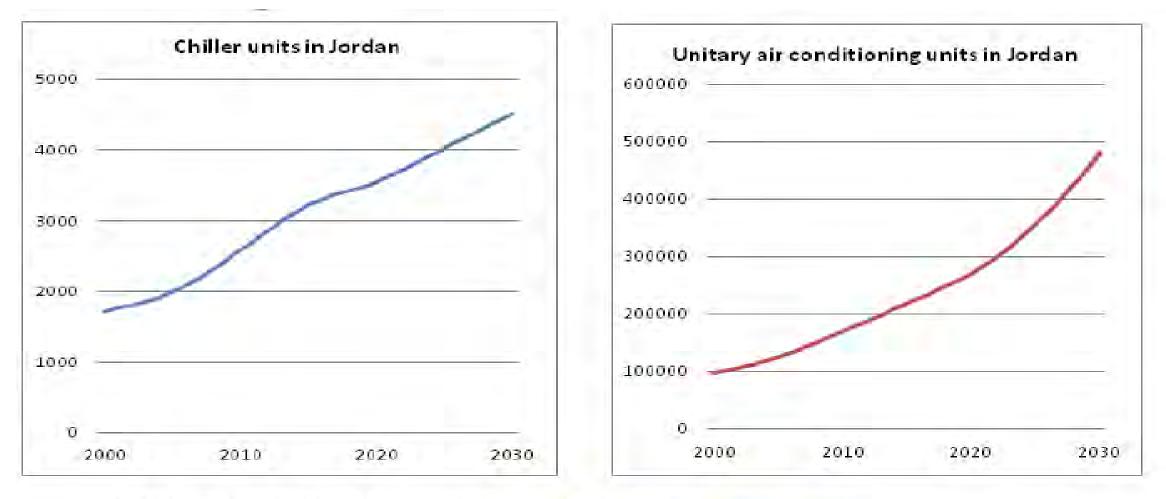


- In 2015 around 1350 solar thermal cooling systems had been installed globally.
- Market is growing as costs come down. (IEA, 2018)



# **Climate and ambient temperature in Jordan**

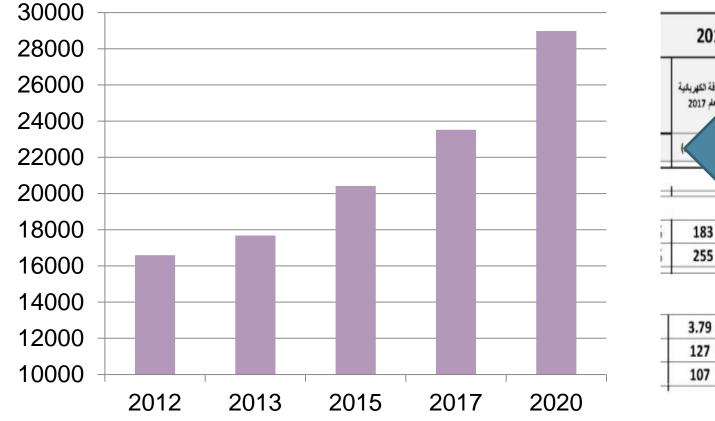



Extreme heat and dry climate (Apr.-Oct.)

### **Exellent Conditions:**

- High solar radiation
- Small proportion of indirect radiation
- High cooling demand and high solar irradiation are overlapping

# **Estimated Future Demand of AC in Jordan**





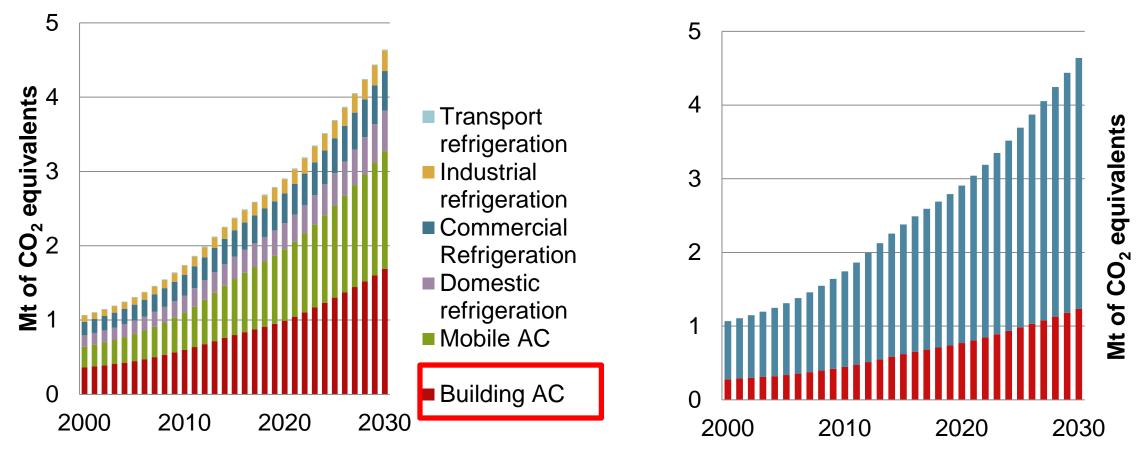

Stock of chiller and unitary air conditioning units in Jordan: 6durce: Green Cooling Initiative (GCI), http://www.green-cooling-initiative.org



#### **Electrical Energy Demand Forecast in Jordan (GWh)**



# Electricity prices rise 15% per year


|                                                      | ٤ــــــ              | التعرفة الكيريلية<br>اعتباراً من 2013/8/15<br>وحتى 2013/12/31 | التعرفة الكهريقية<br>لعام 2014 | التعرفة الكهريقية<br>لعام 2015 | الترفة الكهريات<br>لعام 2016 | التعرفة الكهرياني<br>لعلم 2017 |  |
|------------------------------------------------------|----------------------|---------------------------------------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------------|--|
|                                                      | 4 years              | ease in 4                                                     | e incr                         | % pric                         | 75%                          |                                |  |
| لمشتركين التجارييـــــــــــــــــــــــــــــــــــ | ن                    |                                                               |                                |                                |                              |                                |  |
| 2000 -1                                              | كيلو واط ساعة شهريا  | 105                                                           | 120                            | 138                            | 159                          | 183                            |  |
| 2000 -1 (                                            |                      |                                                               | 100                            | 193                            | 222                          | 255                            |  |
| ر ۲۰ 2000<br>ار سن 2000                              | كلو واطساعة شهريا    | 146                                                           | 168                            | 193                            | ~~~~                         | 255                            |  |
| ۇيىن 2000                                            |                      | 146                                                           | 108                            | 155                            | ~~~~                         | 233                            |  |
| ۇيىن 2000                                            | الصناعيين المتوسطيسن | 3.79                                                          | 3.79                           | 3.79                           | 3.79                         | 3.79                           |  |
| ار من 2000<br>م. تعرفة المشتركين ال                  | الصناعيين المتوسطيسن |                                                               |                                |                                |                              |                                |  |

Source: Electricity Regulatory Commission, Jordan مصدر: هيئة تنظيم قطاع الكهرباء, الأردن

Quelle: Energy 2013 - Facts & Figures, Ministry of Energy and Mineral Resources, Jordan



#### **Emissions caused by RAC in Jordan by sectors**



Direct emissions Indirect emissions

Own estimations based on

Green Cooling Initiative Methodology http://www.green-cooling-initiative.org/methodology/

NAMAs in the refrigeration, air conditioning and foam sectors, A technical handbook by GIZ Proklima



Federal Ministry for the Environment, Nature Conservation and Nuclear Safety





of the Federal Republic of Germany

#### Solar Cooling for Industry and Commerce, Jordan

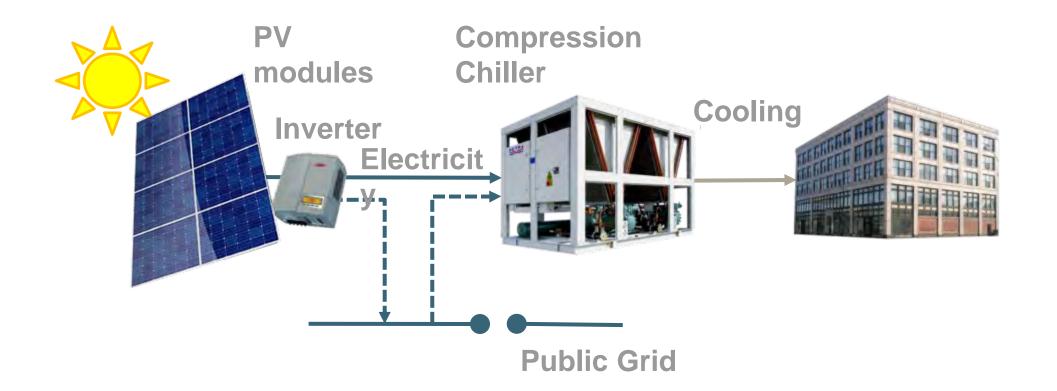
**Budget:** 3.2 Million EUR (German Ministitry of Environment)

**Objective:** Demonstrate feasibility and suitability of solar power cooling in Jordan and the region

- Technology cooperation and transfer
- Local knowledge established for replication
- 4 lighthouse projects up and running

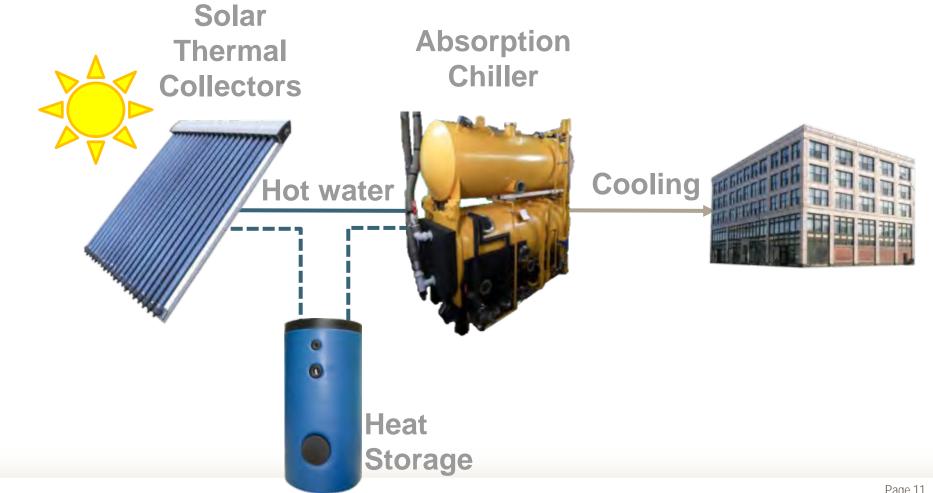
**Project Partners:** Jordan Ministry of Environment, GIZ, Technical University of Berlin, Jordan Manufacturer, Jordanian Universities and Research Institutes

In cooperation with:








#### Compression Chiller combined with PV





#### Absorption Chiller with Thermal



#### **Giz** Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

|                       | German Jordan<br>University (GJU)                            | Petra Guest House<br>(PGH)                              | Royal Culture Center<br>(RCC)                            | Irbid Chamber of<br>Commerce (ICC)                       |  |  |
|-----------------------|--------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--|--|
| solar system          |                                                              | solar heat for heat<br>Compound Parabol                 |                                                          |                                                          |  |  |
| Solar System          | 150 CPC, 480m <sup>2</sup> gross                             | 114 CPC, 388m <sup>2</sup> gross                        | 132 CPG, 449m <sup>2</sup> gross                         | 41 CPC, 140m <sup>2</sup> gmss                           |  |  |
| heat storage          | 4 x 3,5m <sup>3</sup> for heating<br>hydraulically decoupled | 4 x 3m³ for<br>heating/cooling<br>hydraulically coupled | 3 x 3m <sup>3</sup> for heating<br>hydraulically coupled | 1 × 3m <sup>3</sup> for heating<br>hydraulically coupled |  |  |
| chiller(s)            | TUB absorptio                                                | n chiller - type bumblebee                              | (FM160V021)                                              | TUB AbC type Bee<br>(FM050V021)                          |  |  |
|                       |                                                              | 1 / 2 direct air cooled                                 | compression chillers                                     |                                                          |  |  |
| reject heat<br>device | dry cooler - GEA V-Bank type                                 |                                                         |                                                          |                                                          |  |  |
| cooling load          | operating temperatures 6,7 - 9°C to 14°C                     |                                                         |                                                          |                                                          |  |  |
|                       | 816.16                                                       | 24h/7d<br>design: 8-12 am + 6-12pm                      | 8-24                                                     | 8-16                                                     |  |  |

AKA Typ bumblebee (160kW)

Bee (50kW)

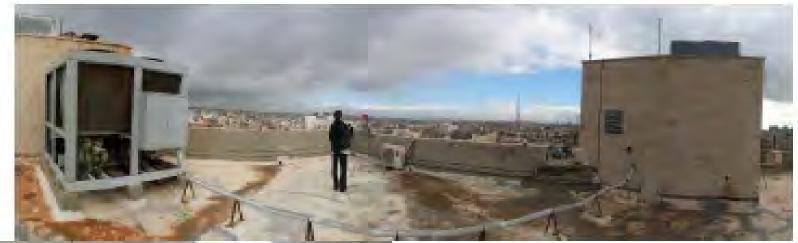
**GIZ** Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

#### German Jordan University (Pilot 1)










### Petra Guest House (Pilot 2)





### Irbid Chamber of Commerce (Pilot 3)





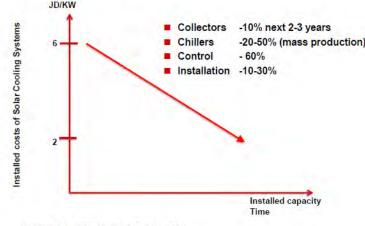


**GIZ** Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

# Royal Cultural Center Amman (Pilot 4)





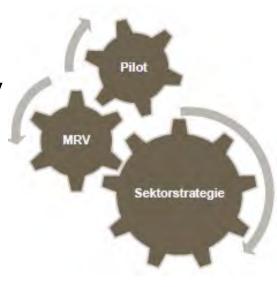



# **Economic Feasibility - Costs**

- Solar field highest cost factor
- Investment costs of solar thermal cooling between 1,600 and 3,200 USD per kW of installed cooling power (IEA 2012); [3,300 € per kW of cooling]
- Operational costs are considerably lower
- Payback: depends on local conditions; electricity prices, availability of components, incentive scheme, etc.

| Component typical share of total costs: |     |  |  |  |  |  |
|-----------------------------------------|-----|--|--|--|--|--|
| Chiller                                 | 18% |  |  |  |  |  |
| Control                                 | 8%  |  |  |  |  |  |
| Auxiliaries                             | 14% |  |  |  |  |  |
| Solar Collector                         | 42% |  |  |  |  |  |
| Heat rejection                          | 8%  |  |  |  |  |  |
| Design & Planning app.                  | 10% |  |  |  |  |  |

#### **Decreasing cost trends**




#### **Gained Experiences**

- 4 solar demo projects show excellent results
- 30% higher efficiency compared to conventional systems
- Lower operation and maintenance costs
- Local business partner on the ground to ensure sustainability
- Pilot MRV Sector Strategy for Jordan

### Recommendations

- Small roof area exposed to solar irradiation
  - PV-supported Hydrocarbon Compression Chiller
- Large roof area exposed to solar irradiation
  - > Absorption Chiller with Solar Thermal collectors
- Roof with high amount of shading
  - Conventional Hydrocarbon Compression Chiller





#### **Up-scaling is needed**

- About every second commercial building in Jordan uses a chiller system and around 5% (150 units) are broken and exchanged every year rising numbers
- Solar/geothermal hybrid cooling systems in Oman is implemented
- Higher capacities are required development of 500kw solar absorption chillers
- Although costs are decreasing further projects are required to decrease technology costs
- Package products are needed
- Local production of the technology might be an option in the future



# Thank you for your attention!

Contact: <u>Philipp.denzinger@giz.de</u> Proklima International

On behalf of:



Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

of the Federal Republic of Germany



